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With transistor budgets ever expanding,

microprocessor architects are steadily integrat-

ing new and more sophisticated mechanisms

into their designs to boost performance. To cope

with this increase in complexity, successful

processor verification efforts must employ a vari-

ety of complementary verification technologies

to achieve an acceptable level of functional cor-

rectness in the final product. Research on prac-

tical verification techniques for microprocessors

has long been impeded by the lack of published

error data, despite the abundance of design

errors in large-scale projects. It is common indus-

try practice to record design errors, but this infor-

mation is considered proprietary and, perhaps,

embarrassing, so it rarely appears in public.

Detailed error data is especially valuable to veri-

fication approaches that use error models to

direct test generation.1,2 Furthermore, sets of

designs and corresponding errors can serve as

benchmarks to compare different verification

methods. Finally, statistical reliability analysis

methods rely heavily on this type of data.3

These considerations led us to turn to acad-

emia as a source of error data from micro-

processor design. We first report on the modest

amount of error data published by industry.

We then describe our method to systematical-

ly collect design error data from university

design projects. After presenting and analyzing

the data we collected, we offer some advice on

the collection process based on lessons

painfully learned.

Industrial Error Data
Although design errors that make their way

into final products are common, microproces-

sor manufacturers have not always been forth-

coming about them. This has changed since

MIPS Technologies Inc., Mountain View, Calif.,

began to publish its bug list.4 The notorious

Pentium FDIV bug also influenced this change.5

To give an idea of these errors, we discuss a few

examples of design errors that have appeared

in major commercial microprocessors and the

data published about them.

The errata list for the MIPS R4000PC and

R4000SC microprocessors (revisions prior to

revision 3.0) documents 55 bugs.4 Many of

these require a rare combination of events
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before they become visible. Referring to Figure

1, the following is a representative bug: If an

instruction sequence that contains a load caus-

ing a data cache miss is followed by a jump,

and the jump instruction is the last instruction

on the page, and further, the delay slot of the

jump is not mapped at the time, then the virtu-

al memory (VM) exception vector is incorrect-

ly overwritten by the jump address. The R4000

will use the jump address as the exception vec-

tor. The workaround suggested ensures that

jump instructions can never be stored in the last

location of a page.4

Early versions of the Intel 8086 were shipped

with the following bug.6 The architecture spec-

ifies that for MOV and POP instructions to a seg-

ment register, interrupts are not to be sampled

until completion of the following instruction.7

This feature allows a 32-bit pointer to be loaded

to the stack pointer registers SS and SP without

the danger of an interrupt occurring between

the two loads. However, early versions of the

8086 do not disable interrupts following a MOV

to a segment register. This causes them to crash

when an interrupt uses the stack between MOV

SS, reg  and MOV SP, op. A workaround is to

insert instructions to temporarily disable the

interrupts when reloading SS. An uncorrectable

problem occurs when an unmaskable interrupt

takes place while executing the instruction pair.

A detailed analysis of the errata lists of the

Intel Pentium II microprocessor is presented by

Avizienis et al.8 This work also proposes a tax-

onomy for the study of design errors. However,

these published bug lists are inadequate for

error model construction for two reasons. First,

the errata lists typically provide only a pro-

grammer’s view of the errors. Error models

depend on the design implementation.

Therefore, more detailed information about the

errors is required, namely the concrete modifi-

cation to the implementation that fixes the

error. Second, errata lists only concern errors

in the final product. Microprocessor companies

go to great efforts to validate the functionality

of their designs. Those design errors that remain

undetected before the product is shipped tend

to be very subtle and difficult to detect. The

majority of all design errors is detected before

reaching the customer, and hence is not docu-

mented in errata lists. Consequently, these lists

are not representative for the overall population

of design errors. These shortcomings spurred

us to begin collecting error data from academ-

ic design projects in the microprocessor area,

quite a few of which can be found at the

University of Michigan.

Collection Method
The most suitable point to collect design

error data is immediately after the design error

is discovered and corrected. At that point, all

relevant information about the design error

should be recorded. This record-keeping

requirement conflicts with the interests of the

designer, however. Overhead has to be

reduced to a minimum to overcome designers’

natural reluctance to cooperate.

Our error collection method uses the revision

management program, CVS.9 This tool supports

the archiving of successive revisions to a design

as they are created in a hardware design lan-

guage (HDL) such as Verilog or VHDL. The

designers were asked to submit a new revision of

their design to CVS whenever a design error was

corrected and whenever it interrupted work on

the design. Some designers resisted the error col-

lection process because they saw it as a way their

work quality could be monitored. We defused

this potential problem by providing designers

with a handout explaining the use of the revision

management system, and by explaining our

objectives to obtain the designers’ cooperation.

Our first tentative design error collection

effort took place during the summer of 1996 and

involved a few students engaged in the design

of the PUMA research microprocessor. Only the

bare revision management system was then in

place. Experience with that project motivated

the introduction of the handout mentioned

here. It was clear that a standardized form was
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Figure 1. Example of instruction sequence that exposes an error.

lw // data cache miss

nop // one or two nop

jr // last instruction in the page

------ // page boundary

nop // first instruction (delay slot of jump)

// on the next page



needed to accompany each revision so that

interesting revisions, such as those involving a

design error correction, can be separated from

other revisions. We therefore augmented the

revision management system so that each time

a new revision is submitted, the user is prompt-

ed to fill out a questionnaire. The questionnaire,

in the form of a multiple choice form as shown

in Figure 2, gathers 4 key pieces of information:

1) the motivation for revising the design. In the

case of a bug, the following apply as well: 2) the

method by which the bug was detected, 3) the

class to which the bug belongs, 4) a short

description of the bug. Design errors can be

detected by reading the HDL code specifying

the design (inspection), by syntax checking per-

formed by the HDL simulator (compilation) or a

synthesis tool (synthesis), or by logic simulation.

The operation of our error collection method

within the design cycle is illustrated in Figure 3.

From the raw revision management data, we

identified the design modifications to fix each

error by computing the differences between

successive revisions. Analysis of the design error

data led to a preliminary classification of design

errors. This classification was used in our first

major design error collection effort, which took

place in the fall of 1996 and involved a design

project included in a computer architecture

course. Analysis of this design error data led us

to revise our error classification scheme. The

result is shown in Figure 2. The categories are

not completely disjoint, so designers were asked

to check all applicable categories.

Data Collected
Design error data was collected from both

class design projects and research projects at

the University of Michigan. All of the designs

were described in Verilog. Table 1 lists these

projects. LC2 refers to the design of the Little

Computer 2 (LC-2), which is a small micro-

processor used for teaching purposes at Michi-

gan.10 The design of both a behavioral and a

synthesizable register-transfer-level model was

carried out by a graduate student in the sum-

mer of 1997. DLX1, DLX2, and DLX3 refer to

design projects that were undertaken as part of

the senior/first-year graduate computer archi-

tecture course (EECS 470) in the fall of 1996.
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Figure 2. Example of a bug report.

(Replace the _ with X where
appropriate)

MOTIVATION:

X bug correction
_ design modification
_ design continuation
_ performance optimization
_ synthesis simplification
_ documentation

BUG DETECTED BY:

_ inspection
_ compilation
X simulation
_ synthesis

BUG CLASSIFICATION:

Please try to identify the primary
source of the error. If in doubt,
check all categories that apply.

X combinational logic:

_ wrong signal source
x missing input(s)
_ unconnected (floating) input(s)
_ unconnected (floating) output(s)
_ conflicting outputs
_ wrong gate/module type
_ missing instance of gate/module

_ sequential logic:

_ extra latch/flipflop
_ missing latch/flipflop
_ extra state
_ missing state
_ wrong next state
_ other finite state machine error

_ statement:

_ if statement
_ case statement
_ always statement
_ declaration
_ port list of module declaration

_ expression (RHS of assignment):

_ missing term/factor
_ extra term/factor
_ missing inversion
_ extra inversion
_ wrong operator
_ wrong constant
_ completely wrong

_ buses:

_ wrong bus width
_ wrong bit order

_ verilog syntax error

_ conceptual error

_ new category (describe below)

BUG DESCRIPTION:

Forgot to select NOP in case of stall



Students designed a pipelined implementation

of the DLX microprocessor at the structural

level.11 X86 concerns an EECS 470 design pro-

ject carried out in the fall of 1997. Students

designed a pipelined implementation of a sub-

set of the Intel X86 architecture.7 FPU refers to

the design of a floating-point unit for the PUMA

processor, which is a PowerPC microprocessor

implemented in complementary GaAs (galli-

um arsenide) process technology, and was

undertaken as part of the graduate level very

large scale integration (VLSI) design class

(EECS 627).12 Both a purely behavioral and a

mixed synthesizable behavioral/structural

model were designed. FXU concerns the

design of the fixed-point unit of the PUMA
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Figure 3. Error collection system.



processor. Two graduate students

wrote the synthesizable behav-

ioral description in the fall of 1996.

For each of the projects the table

lists the number of designers, the

duration of the design entry and

logic debug part, the size of the

design description, and the num-

ber of errors that were logged.

Design verification for the class

projects relied on simulating the

design for a few handwritten

assembly programs. Simulation

outcome was checked by com-

paring the final state of the proces-

sor, and by examining internal

signals over the duration of the

simulation. For the FXU project, designers also

wrote a random program generator and used

that to augment handwritten test cases.

Design project X86 was one of the latest pro-

jects from which we collected error data, and

hence it benefited the most from past experience.

Table 2 lists the design files created in the

course of the project. We list each file’s size, the
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Table 1. Design projects for which error data was collected.

Duration No. of Code size No. of 

Project Class Date (days) designers (lines) errors

LC2 N/A Summer 1997 11 1 1,179 22

DLX1 EECS 470 Fall 1996 16 1 3,010 39

DLX2 EECS 470 Fall 1996 21 1 3,015 35

DLX3 EECS 470 Fall 1996 29 1 5,210 13

X86 EECS 470 Fall 1997 42 3 6,071 59

FPU EECS 627 / PUMA Fall 1996 96 2 5,607 17

FXU PUMA Fall 1996 - Winter 1997 135 2 27,587 113

Table 2: Design files written for the X86 project.

Code size No. of                             Error detection method                           

Design file (lines) revisions Inspection Compilation Simulation Synthesis

decode.v 984 63 1 2 18 0

datapath.v 530 54 0 9 12 0

stages1.v 294 19 0 1 9 0

modules1.v 1,750 27 1 3 8 0

smallmodules.v 1,010 21 0 4 2 0

fetch.v 140 23 1 2 2 0

datacaches.v 674 13 0 0 1 0

exe1.v 135 8 0 1 1 0

modules.v 554 27 3 1 0 0

Total 6,071 255 6 23 53 0

Index: project/decode.v
===============================================================
RCS file: /x/users/davidvc/repositories/repositories_470_f97/
jhauke/470_repository_98/project/decode.v,v
retrieving revision 1.50
retrieving revision 1.49
diff -r1.50 -r1.49
3c3
< $Revision: 1.50 $
---
> $Revision: 1.49 $
5c5
< $Date: 1997/12/13 22:45:54 $
---
> $Date: 1997/12/13 20:43:41 $
878c878
<    nor4$ Controls_NOPsel_nor2(Controls_NOPsel_nor2_out,
CounterInput,HLT_NOP,ScoreNOP,Stallin);
---
>    nor3$ Controls_NOPsel_nor2(Controls_NOPsel_nor2_out,
CounterInput,HLT_NOP,ScoreNOP);

Figure 4. Difference between two successive revisions.



total number of revisions it underwent, and the

number of design bugs recorded, broken down

by detection method. Note that no synthesis

tools were used in this particular project, hence

no errors were detected this way. The errors of

most interest are those detected by inspection

or simulation. The designers were aware that

syntax errors are of little value to our work. We

can therefore assume that many syntax errors

were corrected without recording a new design

revision, and hence do not appear in the table

under the column “Compilation.”

Figure 4 shows the difference between a

design revision and the previous revision moti-

vated by an error involving the X86’s notori-

ously complex decoder logic. In revision 1.49,

nor gate Controls_NOPsel_nor2 misses input

Stallin. Revision 1.50 corrects this error.

Table 3 gives the distribution of design errors

by error category. The dominant type of design

error is a wrong signal source. Errors involving

missing logic are also notable and amount to

33% of the total.

Figure 5 shows the evolution of the project

over time. HDL coding and debugging spanned

42 days in this project. The chart shows the total

size of the design at the end of each day. Also

shown is the number of lines of code that were

touched in the course of each day. Most of the

design description was in place by day 21, per-

mitting integration testing to start.

The number of revisions made in course of

the project is shown in Figure 6. The number

logged on any day is broken up into revisions

that are due to bug corrections and those due

to other reasons. Ideally, there is a one-to-one

correspondence between uncovered design
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Table 3. Error distribution in the X86 project.

Error category Frequency (%)

Wrong signal source 32.8

Missing instance of gate/module 14.8

Missing input(s) 11.5

Wrong gate/module type 9.8

Unconnected (floating) input(s) 8.2

Missing latch/flip-flop 6.6

Conceptual error 4.9

Wrong next state 3.3

Other finite-state machine error 1.6

Extra term/factor 1.6

Extra inversion 1.6

Wrong bit order 1.6

Other 1.6
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errors and revisions motivated by error correc-

tion. Therefore, the bar for the number of revi-

sions logged due to error corrections also gives

the total number of bugs corrected on the cor-

responding day. It can be seen that most of the

bugs were discovered and corrected in the sec-

ond half of the project.

Figure 7 plots the time at which each error

was corrected against the number of lines of

code that were touched to correct the error.

The vertical coordinate is an indication of the

structural complexity of the error. Although

easy to compute, this metric is far from ideal. It

does not distinguish between lines of code that

have merely been reformatted and lines that

have truly been changed. More accurate mea-

sures, such as the minimum number of “atom-

ic” modifications needed to remove an error

from the control dataflow graph of the erro-

neous circuit, would be more appropriate but

such measures are also much harder to com-

pute. About half of the errors involved fewer

than ten lines of code, and only four errors

resulted in design modifications involving more

than 100 lines of code.

We further characterize the design errors

based on purely structural properties. We

define the size of an error as the order of the

polynomial that computes the number of sim-

ilar errors as a function of the size of the cir-

cuit. For example, single-inversion errors and

single-stuck errors both are of size 1, because

there are O(N 1) such errors in a circuit with N

lines. Signal source errors are of size 2 as there

are O(N 2) such errors. We noted that some

actual errors consist of multiple instances of

the same type of error. An example is an inver-

sion error on a port connection of a module

instance that is repeated for all instances of

the module. We define the multiplicity of an

actual error as the number of identical and

repeated instances of a simpler error that con-

stitute the actual error. Figure 8 plots the fre-

quency of design errors when binned

according to size and multiplicity. We observe

that design errors of higher multiplicity are

rare. Errors of multiplicity 1 and size 1 or 2

account for more than half of all design errors.

Only about 12% of the errors are very com-

plex, as indicated by a size of 10 or greater.

Guidelines for Error Collection
A revision management system like CVS has

proven to be an invaluable aid in design error

collection. Not only did it allow detailed analy-

sis of concrete errors but also eventually came

to be appreciated by the designers.

Nevertheless, a few designers saw the revision

management system as a surreptitious way to

monitor their work. Such reservations can usu-

ally be overcome by fully explaining the intent

of the management system and the benefits

accruing from its use.

A key factor is to remove the stigma usually

associated with design errors. The participation

of students from class projects in the error col-

lection effort was on an entirely voluntary basis.

We made an effort to make the participating

students feel engaged with our research pro-

ject, and carefully explained the value of col-

lecting error data.

The need to minimize the overhead of error

logging for the designer cannot be underesti-

mated. Although the designer is, in principle,

in the best position to classify each newly dis-

covered error, this small effort, from which the

designer may not see immediate benefit, might

be felt as a burden or threat. Consequently, the

designation of errors often becomes imprecise.

We observed that for long periods some design-
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ers marked all of their bugs as conceptual error,

even if the actual error involved a single-inver-

sion error. This led us to reassess the raw revi-

sion data and explains the discrepancies

between the data reported here and that in ear-

lier work.2 The reassessment also corrected the

counts assigned to errors that spanned multiple

design files. Previously, these errors had been

overrepresented. This adjustment primarily

affects the bigger designs where such errors

occurred more often.

An important element in an error collection

effort is to encourage designers to adopt the

habit of systematically recording every single

design error that is not a syntax error. Simple

errors such as single inversion errors do not

require much explanation. For more elaborate

errors a brief textual description of the error,

even if is is already listed in the present error

template, is very helpful to analyze the error

afterward. Additional pieces of information

could include a measure of the difficulty of

detecting the error, and the root source of the

error. Typical root sources include oversight,

failure to consider certain behavior, wrongly

implemented behavior, misunderstanding of

specification, and miscommunication between

designers.

Provided that a new design revi-

sion has been systematically

recorded for each detected error,

the task of classifying the errors

with respect to their structural

aspects (item 3 of our question-

naire) can be performed by engi-

neers other than the original

designers, perhaps with the help of

automation.

Some additional practical con-

siderations need to be pointed out.

Fixing a single design error may

require multiple modify/simulate

cycles, and hence multiple revi-

sions. The designer should record

information to distinguish such

revisions. Fixing a single design

error may require modifications to

multiple files. Designers should

submit new revisions for all of

these files together. Otherwise, the

revisions data can wrongly be interpreted as

concerning multiple errors.

Discussion
Table 4 summarizes the error distributions

for all the monitored projects. Also listed is the

average error frequency over all projects. We

observed that signal source errors were the

most common type of error at 30%. Errors

involving missing logic (missing instance, miss-

ing input, missing term, or missing state) were

the second most common group at 26%. Also

of note were apparently simple errors, such as

extra/missing inversions and unconnected

inputs, which account for 17% of all errors.

More detailed analysis of these errors showed

that some were detected quite late in the pro-

ject. This indicates that behavior of some parts

of the design is not properly exercised, since

the simple errors do not require any activation

conditions.

Our design error collection effort has several

inherent limitations, so care should be taken in

interpreting our data. First, student designers

have limited experience, even in a university

program with a strong design emphasis.

Nevertheless, their errors may not be too far
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removed from those made by professional

designers, since a considerable amount of

industrial microprocessor design is done by

recent graduates (but working under the super-

vision of experienced designers). Second, class

projects are short in duration and the verifica-

tion effort possible is modest. Consequently,

this data may contain a disproportionately

small number of hard-to-detect errors, com-

pared to data from industrial design projects.

This limitation also applies to the data derived

from university research projects, but to a less-

er extent. ■
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