Collection and Analysis of

—rrors

Microprocessor Design

David Van Campenhout John P. Hayes
Verisity Design University of Michigan
Trevor Mudge

University of Michigan

Research on practical design verification techniques
has long been impeded by the lack of published,
detailed error data. We have systematically
collected design error data over the last few years
from a number of academic microprocessor design
projects. We analyzed this data and report on the
lessons learned in the collection effort.

B With transistor budgets ever expanding,
microprocessor architects are steadily integrat-
ing new and more sophisticated mechanisms
into their designs to boost performance. To cope
with this increase in complexity, successful
processor verification efforts must employ a vari-
ety of complementary verification technologies
to achieve an acceptable level of functional cor-
rectness in the final product. Research on prac-
tical verification techniques for microprocessors
has long been impeded by the lack of published
error data, despite the abundance of design
errors in large-scale projects. It is common indus-
try practice to record design errors, but this infor-
mation is considered proprietary and, perhaps,
embarrassing, so it rarely appears in public.
Detailed error data is especially valuable to veri-
fication approaches that use error models to

October-December 2000

direct test generation.'? Furthermore, sets of
designs and corresponding errors can serve as
benchmarks to compare different verification
methods. Finally, statistical reliability analysis
methods rely heavily on this type of data.?

These considerations led us to turn to acad-
emia as a source of error data from micro-
processor design. We first report on the modest
amount of error data published by industry.
We then describe our method to systematical-
ly collect design error data from university
design projects. After presenting and analyzing
the data we collected, we offer some advice on
the collection process based on lessons
painfully learned.

Industrial Error Data

Although design errors that make their way
into final products are common, microproces-
sor manufacturers have not always been forth-
coming about them. This has changed since
MIPS Technologies Inc., Mountain View, Calif.,
began to publish its bug list.* The notorious
Pentium FDIV bug also influenced this change.’
To give an idea of these errors, we discuss a few
examples of design errors that have appeared
in major commercial microprocessors and the
data published about them.

The errata list for the MIPS R4000PC and
R4000SC microprocessors (revisions prior to
revision 3.0) documents 55 bugs.” Many of
these require a rare combination of events

0740-7475/00/$10.00 © 2000 IEEE

52

Microprocessor Design Errors

(A /Il data cache niss

nop /1 one or two nop

jr /1 last instruction in the page

------ /1 page boundary

nop /1 first instruction (delay slot of jump)
/1 on the next page

Figure 1. Example of instruction sequence that exposes an error.

before they become visible. Referring to Figure
1, the following is a representative bug: If an
instruction sequence that contains a load caus-
ing a data cache miss is followed by a jump,
and the jump instruction is the last instruction
on the page, and further, the delay slot of the
jump is not mapped at the time, then the virtu-
al memory (VM) exception vector is incorrect-
ly overwritten by the jump address. The R4000
will use the jump address as the exception vec-
tor. The workaround suggested ensures that
jump instructions can never be stored in the last
location of a page.’

Early versions of the Intel 8086 were shipped
with the following bug.® The architecture spec-
ifies that for MOV and POP instructions to a seg-
ment register, interrupts are not to be sampled
until completion of the following instruction.”
This feature allows a 32-bit pointer to be loaded
to the stack pointer registers SS and SP without
the danger of an interrupt occurring between
the two loads. However, early versions of the
8086 do not disable interrupts following a MOV
to a segment register. This causes them to crash
when an interrupt uses the stack between MOV
SS, reg and MOV SP, op. A workaround is to
insert instructions to temporarily disable the
interrupts when reloading SS. An uncorrectable
problem occurs when an unmaskable interrupt
takes place while executing the instruction pair.

A detailed analysis of the errata lists of the
Intel Pentium Il microprocessor is presented by
Avizienis et al.® This work also proposes a tax-
onomy for the study of design errors. However,
these published bug lists are inadequate for
error model construction for two reasons. First,
the errata lists typically provide only a pro-
grammer’s view of the errors. Error models
depend on the design implementation.
Therefore, more detailed information about the
errors is required, namely the concrete modifi-

cation to the implementation that fixes the
error. Second, errata lists only concern errors
in the final product. Microprocessor companies
go to great efforts to validate the functionality
of their designs. Those design errors that remain
undetected before the product is shipped tend
to be very subtle and difficult to detect. The
majority of all design errors is detected before
reaching the customer, and hence is not docu-
mented in errata lists. Consequently, these lists
are not representative for the overall population
of design errors. These shortcomings spurred
us to begin collecting error data from academ-
ic design projects in the microprocessor area,
quite a few of which can be found at the
University of Michigan.

Collection Method

The most suitable point to collect design
error data is immediately after the design error
is discovered and corrected. At that point, all
relevant information about the design error
should be recorded. This record-keeping
requirement conflicts with the interests of the
designer, however. Overhead has to be
reduced to a minimum to overcome designers’
natural reluctance to cooperate.

Our error collection method uses the revision
management program, CVS.? This tool supports
the archiving of successive revisions to a design
as they are created in a hardware design lan-
guage (HDL) such as Verilog or VHDL. The
designers were asked to submit a new revision of
their design to CVS whenever a design error was
corrected and whenever it interrupted work on
the design. Some designers resisted the error col-
lection process because they saw it as a way their
work quality could be monitored. We defused
this potential problem by providing designers
with a handout explaining the use of the revision
management system, and by explaining our
objectives to obtain the designers’ cooperation.

Our first tentative design error collection
effort took place during the summer of 1996 and
involved a few students engaged in the design
of the PUMA research microprocessor. Only the
bare revision management system was then in
place. Experience with that project motivated
the introduction of the handout mentioned
here. It was clear that a standardized form was

IEEE Design & Test of Computers

needed to accompany each revision so that
interesting revisions, such as those involving a
design error correction, can be separated from
other revisions. We therefore augmented the
revision management system so that each time
a new revision is submitted, the user is prompt-
ed to fill out a questionnaire. The questionnaire,
in the form of a multiple choice form as shown
in Figure 2, gathers 4 key pieces of information:
1) the motivation for revising the design. In the
case of a bug, the following apply as well: 2) the
method by which the bug was detected, 3) the
class to which the bug belongs, 4) a short
description of the bug. Design errors can be
detected by reading the HDL code specifying
the design (inspection), by syntax checking per-
formed by the HDL simulator (compilation) or a
synthesis tool (synthesis), or by logic simulation.
The operation of our error collection method
within the design cycle is illustrated in Figure 3.

From the raw revision management data, we
identified the design modifications to fix each
error by computing the differences between
successive revisions. Analysis of the design error
data led to a preliminary classification of design
errors. This classification was used in our first
major design error collection effort, which took
place in the fall of 1996 and involved a design
project included in a computer architecture
course. Analysis of this design error data led us
to revise our error classification scheme. The
result is shown in Figure 2. The categories are
not completely disjoint, so designers were asked
to check all applicable categories.

Data Collected

Design error data was collected from both
class design projects and research projects at
the University of Michigan. All of the designs
were described in Verilog. Table 1 lists these
projects. LC2 refers to the design of the Little
Computer 2 (LC-2), which is a small micro-
processor used for teaching purposes at Michi-
gan." The design of both a behavioral and a
synthesizable register-transfer-level model was
carried out by a graduate student in the sum-
mer of 1997. DLX1, DLX2, and DLX3 refer to
design projects that were undertaken as part of
the senior/first-year graduate computer archi-
tecture course (EECS 470) in the fall of 1996.

October-December 2000

(Replace the _ with X where

appropri ate)
MOTI VATI ON:

X bug correction

desi gn nodification

desi gn continuation
performance optim zation
synthesis sinplification
docurent at i on

BUG DETECTED BY:

i nspection
conpil ation
simul ation
_ synthesis

XI

BUG CLASSI FI CATI ON:

Pl ease try to identify the primary
source of the error. If in doubt,
check all categories that apply.

X conbi national |ogic:

wrong signal source

m ssing input(s)

unconnected (floating) input(s)
unconnected (floating) output(s)
conflicting outputs

wrong gat e/ nodul e type

m ssing instance of gate/nodul e

x|

sequential |ogic:

_extra latch/flipflop
_mssing latch/flipflop
_ extra state

_ mssing state

_ wrong next state

_ other finite state nachine error

statenent:

if statenent

case statenent

al ways st at ement

decl aration

_ port list of nodule declaration

expressi on (RHS of assignnent):

m ssing ternifactor
extra terni factor
m ssing inversion
extra inversion
wrong oper at or
wrong const ant
conpl etely w ong

buses:

_ wrong bus width
_ wong bit order

verilog syntax error
conceptual error

_ new category (describe bel ow)

BUG DESCRI PTI ON:

Forgot to select NOP in case of stall

Figure 2. Example of a bug report.

53

54

Microprocessor Design Errors

Design input

File

Simulate design

Edit Control ¥iew Format Options Windows Help

Undo v |

| ZoomIn

[« g« 7 _________pf

Cursorl
‘Cursor?

o

-1

output, inout)

in design

B-input to adder was +1 instead of -1

CVS
revision

Detect bug

Correct bug

database

Figure 3. Error collection system.

Students designed a pipelined implementation
of the DLX microprocessor at the structural
level." X86 concerns an EECS 470 design pro-
ject carried out in the fall of 1997. Students
designed a pipelined implementation of a sub-
set of the Intel X86 architecture.” FPU refers to
the design of a floating-point unit for the PUMA
processor, which is a PowerPC microprocessor

implemented in complementary GaAs (galli-
um arsenide) process technology, and was
undertaken as part of the graduate level very
large scale integration (VLSI) design class
(EECS 627).12 Both a purely behavioral and a
mixed synthesizable behavioral/structural
model were designed. FXU concerns the
design of the fixed-point unit of the PUMA

IEEE Design & Test of Computers

Table 1. Design projects for which error data was collected.

Duration No. of Code size No. of
Project Class Date (days) designers (lines) errors
LC2 N/A Summer 1997 11 1 1,179 22
DLX1 EECS 470 Fall 1996 16 1 3,010 39
DLX2 EECS 470 Fall 1996 21 1 3,015 35
DLX3 EECS 470 Fall 1996 29 1 5,210 13
X86 EECS 470 Fall 1997 42 3 6,071 59
FPU EECS 627 / PUMA Fall 1996 96 2 5,607 17
FXU PUMA Fall 1996 - Winter 1997 135 2 27,587 113
|
Table 2: Design files written for the X86 project.
Code size No. of Error detection method
Design file (lines) revisions Inspection Compilation Simulation Synthesis
decode.v 984 63 1 2 18 0
datapath.v 530 54 0 9 12 0
stagesl.v 294 19 0 1 9 0
modulesl.v 1,750 27 1 3 8 0
smallmodules.v 1,010 21 0 4 2 0
fetch.v 140 23 1 2 2 0
datacaches.v 674 13 0 0 1 0
exel.v 135 8 0 1 1 0
modules.v 554 27 3 1 0 0
Total 6,071 255 6 23 53 0
processor. Two graduate students I ndex: project/decode.v
wrote the synthesizable behav- RCS file: /x/users/davidvc/repositories/repositories_470_f97/

ioral description in the fall of 1996.
For each of the projects the table
lists the number of designers, the
duration of the design entry and
logic debug part, the size of the
design description, and the num-
ber of errors that were logged.
Design verification for the class
projects relied on simulating the
design for a few handwritten
assembly programs. Simulation
outcome was checked by com-
paring the final state of the proces-
sor, and by examining internal
signals over the duration of the

simulation. For the FXU project, designers also

wrote a random program generator and used

that to augment handwritten test cases.
Design project X86 was one of the latest pro-

October-December 2000

j hauke/ 470_r eposi tory_98/ proj ect/ decode. v, v
retrieving revision 1.50
retrieving revision 1.49

diff -r1.50 -r1.49

3c3

< $Revision: 1.50 $

> $Revision: 1.49 $

5c5

< $Date: 1997/12/13 22:45:54 $
> $Date: 1997/12/13 20:43:41 $
878c878

< nor4$ Control s_NOPsel _nor2(Controls_NOPsel _nor2_out,
Count er | nput , HLT_NOP, Scor eNOP, St al | i n);

> nor 3$ Control s_NOPsel _nor2(Controls_NOPsel _nor2_out,
Count er | nput , HLT_NGP, Scor eNOP) ;

Figure 4. Difference between two successive revisions.

jects from which we collected error data, and
hence it benefited the most from past experience.

Table 2 lists the design files created in the
course of the project. We list each file’s size, the

95

56

Microprocessor Design Errors

|
Table 3. Exror distribution in the X86 project. 7,000 - : : R S
— Code size
Error category Frequency (%) 6,000 | ‘:| LinesA touchgd
Wrong signal source 32.8 f
Missing instance of gate/module 14.8 5,000 [
Missing input(s) 11.5 _ [_/‘
Wrong gate/module type 9.8 g 4,000 [-voroooee
Unconnected (floating) input(s) 8.2 % /
Missing latch/flip-flop 6.6 (% 3,000 |-
Conceptual error 4.9
Wrong next state 3.3 2,000 |-]
Other finite-state machine error 1.6 f
Extra term/factor 1.6 1,000 |- / ;
Wrong bit order 1.6 0O 5 10 15 20 25 30 35 40 45
Other 1.6 Days
Figure 5. Project evolution: code size (lines) and lines touched
over time.
35 : A e can therefore assume that many syntax errors
"Revisions due to bug correction M were corrected without recording a new design
30|.—= Other revisions i revision, and hence do not appear in the table
1 under the column “Compilation.”
25| Figure 4 shows the difference between a
2 design revision and the previous revision moti-
:§ 20| vated by an error involving the X86’s notori-
Z ously complex decoder logic. In revision 1.49,
§ 1L E— nor gate Controls_NOPsel_nor2 misses input
Stallin. Revision 1.50 corrects this error.
10} Table 3 gives the distribution of design errors
A —| by error category. The dominant type of design
50 error is a wrong signal source. Errors involving
. I H H Hﬂ missing logic are also notable and amount to
(]

20 25 40 45

Days

30 35

Figure 6. Revisions motivated by bug correction and other

revisions over time.

total number of revisions it underwent, and the
number of design bugs recorded, broken down
by detection method. Note that no synthesis
tools were used in this particular project, hence
no errors were detected this way. The errors of
most interest are those detected by inspection
or simulation. The designers were aware that
syntax errors are of little value to our work. We

33% of the total.

Figure 5 shows the evolution of the project
over time. HDL coding and debugging spanned
42 days in this project. The chart shows the total
size of the design at the end of each day. Also
shown is the number of lines of code that were
touched in the course of each day. Most of the
design description was in place by day 21, per-
mitting integration testing to start.

The number of revisions made in course of
the project is shown in Figure 6. The number
logged on any day is broken up into revisions
that are due to bug corrections and those due
to other reasons. Ideally, there is a one-to-one
correspondence between uncovered design

IEEE Design & Test of Computers

errors and revisions motivated by error correc-
tion. Therefore, the bar for the number of revi-
sions logged due to error corrections also gives
the total number of bugs corrected on the cor-
responding day. It can be seen that most of the
bugs were discovered and corrected in the sec-
ond half of the project.

Figure 7 plots the time at which each error
was corrected against the number of lines of
code that were touched to correct the error.
The vertical coordinate is an indication of the
structural complexity of the error. Although
easy to compute, this metric is far from ideal. It
does not distinguish between lines of code that
have merely been reformatted and lines that
have truly been changed. More accurate mea-
sures, such as the minimum number of “atom-
ic” modifications needed to remove an error
from the control dataflow graph of the erro-
neous circuit, would be more appropriate but
such measures are also much harder to com-
pute. About half of the errors involved fewer
than ten lines of code, and only four errors
resulted in design modifications involving more
than 100 lines of code.

We further characterize the design errors
based on purely structural properties. We
define the size of an error as the order of the
polynomial that computes the number of sim-
ilar errors as a function of the size of the cir-
cuit. For example, single-inversion errors and
single-stuck errors both are of size 1, because
there are O(N') such errors in a circuit with N
lines. Signal source errors are of size 2 as there
are O(N?) such errors. We noted that some
actual errors consist of multiple instances of
the same type of error. An example is an inver-
sion error on a port connection of a module
instance that is repeated for all instances of
the module. We define the multiplicity of an
actual error as the number of identical and
repeated instances of a simpler error that con-
stitute the actual error. Figure 8 plots the fre-
quency of design errors when binned
according to size and multiplicity. We observe
that design errors of higher multiplicity are
rare. Errors of multiplicity 1 and size 1 or 2
account for more than half of all design errors.
Only about 12% of the errors are very com-
plex, as indicated by a size of 10 or greater.

October-December 2000

45

1,000 ; R—
7
4] ; :
£ o :
.g 100 |
o ;
s ° *o o o i
8 oo ? °o§§
S [0 : Lo
w ° oo o 800 20 Q
o 8¢
: Qo
i o o
6 o | oomio
1 ; z z
0 5 10 15 20 25 30 35 40
Days

Figure 7. Design errors: time to discovery (days) compared to error

size (lines).

Guidelines for Error Collection

A revision management system like CVS has
proven to be an invaluable aid in design error
collection. Not only did it allow detailed analy-
sis of concrete errors but also eventually came
to be appreciated by the designers.
Nevertheless, a few designers saw the revision
management system as a surreptitious way to
monitor their work. Such reservations can usu-
ally be overcome by fully explaining the intent
of the management system and the benefits
accruing from its use.

A key factor is to remove the stigma usually
associated with design errors. The participation
of students from class projects in the error col-
lection effort was on an entirely voluntary basis.
We made an effort to make the participating
students feel engaged with our research pro-
ject, and carefully explained the value of col-
lecting error data.

The need to minimize the overhead of error
logging for the designer cannot be underesti-
mated. Although the designer is, in principle,
in the best position to classify each newly dis-
covered error, this small effort, from which the
designer may not see immediate benefit, might
be felt as a burden or threat. Consequently, the
designation of errors often becomes imprecise.
We observed that for long periods some design-

S7

58

Microprocessor Design Errors

Frequency

designers.

Provided that a new design revi-
sion has been systematically
recorded for each detected error,
the task of classifying the errors
with respect to their structural
aspects (item 3 of our question-
naire) can be performed by engi-
neers other than the original
designers, perhaps with the help of
automation.

Some additional practical con-
siderations need to be pointed out.
Fixing a single design error may
require multiple modify/simulate
cycles, and hence multiple revi-
sions. The designer should record
information to distinguish such
revisions. Fixing a single design

Figure 8. Frequency of design errors in function of their size and multiplicity.

ers marked all of their bugs as conceptual error,
even if the actual error involved a single-inver-
sion error. This led us to reassess the raw revi-
sion data and explains the discrepancies
between the data reported here and that in ear-
lier work.? The reassessment also corrected the
counts assigned to errors that spanned multiple
design files. Previously, these errors had been
overrepresented. This adjustment primarily
affects the bigger designs where such errors
occurred more often.

An important element in an error collection
effort is to encourage designers to adopt the
habit of systematically recording every single
design error that is not a syntax error. Simple
errors such as single inversion errors do not
require much explanation. For more elaborate
errors a brief textual description of the error,
even if is is already listed in the present error
template, is very helpful to analyze the error
afterward. Additional pieces of information
could include a measure of the difficulty of
detecting the error, and the root source of the
error. Typical root sources include oversight,
failure to consider certain behavior, wrongly
implemented behavior, misunderstanding of
specification, and miscommunication between

error may require modifications to
multiple files. Designers should
submit new revisions for all of
these files together. Otherwise, the
revisions data can wrongly be interpreted as
concerning multiple errors.

Discussion

Table 4 summarizes the error distributions
for all the monitored projects. Also listed is the
average error frequency over all projects. We
observed that signal source errors were the
most common type of error at 30%. Errors
involving missing logic (missing instance, miss-
ing input, missing term, or missing state) were
the second most common group at 26%. Also
of note were apparently simple errors, such as
extra/missing inversions and unconnected
inputs, which account for 17% of all errors.
More detailed analysis of these errors showed
that some were detected quite late in the pro-
ject. This indicates that behavior of some parts
of the design is not properly exercised, since
the simple errors do not require any activation
conditions.

Our design error collection effort has several
inherent limitations, so care should be taken in
interpreting our data. First, student designers
have limited experience, even in a university
program with a strong design emphasis.
Nevertheless, their errors may not be too far

IEEE Design & Test of Computers

___|
Table 4. Design error distributions (%). Among the errors marked as new category are timing errors and errors that
required very elaborate corrections.
Category LC2 DLX1 DLX2 DLX3 X86 FPU FXU Average
Wrong signal source 27.3 314 25.7 46.2 32.8 23.5 25.7 30.4
Missing instance 28.6 20.0 23.1 14.8 5.9 15.9 15.5
Missing inversion 8.6 47.1 16.8 10.3
New category 9.1 8.6 7.7 6.6 11.8 4.4 6.9
Unconnected input(s) 8.6 14.3 7.7 8.2 5.9 0.9 6.5
Missing input(s) 9.1 8.6 5.7 7.7 115 6.1
Wrong gate/module type 13.6 11.4 9.8 5.0
Missing term/factor 9.1 2.9 5.7 4.4 3.2
Wrong constant 9.1 2.9 9.7 3.1
Always statement 9.1 2.9 2.7 2.1
Missing latch/flip-flop 4.9 5.9 0.9 1.7
Wrong bus width 4.5 7.1 1.7
Missing state 9.1 1.3
Conflicting outputs 7.7 1.1
Conceptual error 2.9 3.3 0.9 1.0
Signal declaration 5.7 0.8
Extra term/factor 2.9 1.6 0.9 0.8
Wrong operator 4.4 0.6
Gate or module input 2.9 0.4
Case statement 2.7 0.4
Other FSM error 1.6 0.2
Extra inversion 1.6 0.2
Wrong bit order 1.6 0.2
Wrong next state 1.6 0.2
Latch 0.9 0.1
If statement 0.9 0.1
Expression completely wrong 0.9 0.1

removed from those made by professional
designers, since a considerable amount of
industrial microprocessor design is done by
recent graduates (but working under the super-
vision of experienced designers). Second, class
projects are short in duration and the verifica-
tion effort possible is modest. Consequently,
this data may contain a disproportionately
small number of hard-to-detect errors, com-
pared to data from industrial design projects.
This limitation also applies to the data derived
from university research projects, but to a less-
er extent.]

M References

1. M.S. Abadir, J. Ferguson, and T.E. Kirkland, “Logic
Design Verification Via Test Generation,” IEEE

October-December 2000

Trans. Computer-Aided Design, Vol. 7, No. 1,
1988, pp. 138-148.

. D. Van Campenhout et al., “High-Level Design Ver-

ification of Microprocessors Via Error Modeling,”
ACM Trans. Design Automation of Electronic Sys-
tems, Vol. 3, No. 4, 1998, pp. 581-599.

. Y. Malka and A. Ziv. “Design Reliability—Estima-

tion Through Statistical Analysis of Bug Discovery
Data,” Proc. Design Automation Conf., 1998,
pp. 644-649.

. MIPS Technologies Inc., MIPS R4000PC/SC

Errata, Processor Rev. 2.2 and 3.0, 1994,
http://www.mips.com/publications.

. B. Beizer, “The Pentium Bug—an Industry Water-

shed,” Testing Techniques Newsletter, TTN
Online Edition, 1995. http://www.soft.com/News/
TTN-Online/ttnsep95.html.

IEEE Design & Test of Computers

59

60

Microprocessor Design Errors

6. Hamarsoft, Hamarsoft's 86BUGS List, 4th ed.,
Heerlen, The Netherlands, 1994. http://www.
xs4all.nl/~feldmann.

7. Intel Corp. 8086/8088 User's Manual, Program-
mer’s and Hardware Reference Manual, 1989.

8. A. Avizienis and Y. He, “Microprocessor entomol-
ogy: a taxonomy of design faults in COTS micro-
processors,” Proc. Dependable Computing for
Critical Applications, Vol. 7, 1999.

9. P. Cederqyvist et al., “Version management with
CVS,” Signum Support AB, 1993. http://www.
cvshome.org

10. M. Postiff. LC-2 Programmer’s Reference Manual.
Rev. 3.1. University of Michigan, Ann Arbor, 1996.

11. J. Hennessy and D. Patterson, Computer Archi-
tecture: A Quantitative Approach, Morgan
Kaufman, San Mateo, Calif., 1990.

12. R.B. Brown et al. “Complementary GaAs technol-
ogy for a GHz microprocessor,” Proc. GaAs IC

Symp., Tech. Digest, Orlando, Fla., 1996, pp.
313-316.

David Van Campenhout
is a member of the technical
staff at Versity Design, Moun-
tain View, CA, where he has
been working on functional

! test generation and temporal
logic. His research interests include functional
verification, formal methods, and VLSI design.
He received an Engineering degree from
Katholieke Universiteit Leuven in 1993 and MS
and PhD degrees in electrical engineering from
the University of Michigan in 1994 and 1999,
respectively.

Trevor Mudge received
the BSc degree in cybernet-
ics from the University of
Reading, England, in 1969,
and the MS and PhD
degrees in computer sci-
ence from the University of Illinois, Urbana in
1973 and 1977, respectively. Since 1977, he has
been on the faculty of the University Michigan,
Ann Arbor. He is a professor of electrical engi-
neering and computer science and recently

served as Director of the Advanced Computer
Architecture Laboratory. He is the author of arti-
cles on computer architecture, programming
languages, VLSI design, and computer vision,
and he holds a patent in computer aided-design
of VLSI circuits. His research interests include
computer architecture, computer-aided design,
and compilers. Mudge is a Fellow of the IEEE, a
member of the ACM, the IEE, and the British
Computer Society.

John P. Hayes has been a
professor in the Electrical
Engineering and Computer
Science Department of the
N g University of Michigan, Ann

& M Arbor, since 1982, He teach-
es and conducts research in the areas of com-
puter-aided design verification and testing,
computer architecture, VLSI design, and fault-
tolerant computing. He is the author of several
books including Computer Architecture and
Organization and was the founding director of
Michigan’s Advanced Computer Architecture
Laboratory. Hayes received a BE degree from
the National University of Ireland, Dublin, and MS
and PhD degrees from the University of lllinois,
all in electrical engineering. He is an IEEE fellow,
and a member of ACM and Sigma Xi.

B Address concerns and questions to David
Van Campenhout, Verisity Design Inc., 2041
Landings Avenue, Mountain View, CA 94043; e-
mail dvc@uverisity.com.

IEEE Design & Test of Computers

